Hodgkin-Huxley Model
and
FitzHugh-Nagumo Model
Nervous System

- Signals are propagated from nerve cell to nerve cell (*neuron*) via electro-chemical mechanisms
- ~100 billion neurons in a person
- Hodgkin and Huxley experimented on squids and discovered how the signal is produced within the neuron
- H.-H. model was published in *Jour. of Physiology* (1952)
- H.-H. were awarded 1963 Nobel Prize
- FitzHugh-Nagumo model is a simplification
When the axon is excited, V spikes because sodium Na^+ and potassium K^+ ions flow through the membrane.

Axon membrane potential difference

$$V = V_i - V_e$$
Nernst Potential

V_{Na}, V_{K} and V_{r}

Ion flow due to electrical signal

Traveling wave

C. George Boeree: www.ship.edu/~cgboeree/
Since the membrane separates charge, it is modeled as a capacitor with capacitance C. Ion channels are resistors.

$$\frac{1}{R} = g = \text{conductance}$$

V_{K} \quad V_{Na} \quad V_{r}

C

g_{K} g_{Na} g_{r}

$i_{C} = C \frac{dV}{dt}$

$i_{Na} = g_{Na} (V - V_{Na})$

$i_{K} = g_{K} (V - V_{K})$

$i_{r} = g_{r} (V - V_{r})$
Since the sum of the currents is 0, it follows that

\[C \frac{dV}{dt} = -g_{Na}(V - V_{Na}) - g_K(V - V_K) - g_r(V - V_r) + I_{ap} \]

where \(I_{ap} \) is applied current. If ion conductances are constants then group constants to obtain 1st order, linear eq

\[C \frac{dV}{dt} = -g(V - V^*) + I_{ap} \]

Solving gives

\[V(t) \rightarrow V^* + \frac{I_{ap}}{g} \]
Experiments showed that g_{Na} and g_{K} varied with time and V. After stimulus, Na responds much more rapidly than K.
Hodgkin-Huxley System

Four state variables are used:

\[v(t) = V(t) - V_{eq} \] is membrane potential,

\[m(t) \] is Na activation,

\[n(t) \] is K activation and

\[h(t) \] is Na inactivation.

In terms of these variables \(g_K = g_K n^4 \) and \(g_{Na} = g_{Na} m^3 h. \)

The resting potential \(V_{eq} \approx -70 \text{mV}. \) Voltage clamp experiments determined \(g_K \) and \(n \) as functions of \(t \) and hence the parameter dependences on \(v \) in the differential eq. for \(n(t) \). Likewise for \(m(t) \) and \(h(t) \).
Hodgkin-Huxley System

\[
C \frac{d\nu}{dt} = -g_{Na} m^3 h (\nu - V_{Na}) - g_K n^4 (\nu - V_K) - g_r (\nu - V_r) + I_{ap}
\]

\[
\frac{dm}{dt} = \alpha_m(\nu)(1 - m) - \beta_m(\nu)m
\]

\[
\frac{dn}{dt} = \alpha_n(\nu)(1 - n) - \beta_n(\nu)n
\]

\[
\frac{dh}{dt} = \alpha_h(\nu)(1 - h) - \beta_h(\nu)h
\]
$I_{ap} = 8, v(t)$

$I_{ap} = 7, v(t)$
Fast-Slow Dynamics

\[\rho_m(v) \frac{dm}{dt} = m_\infty(v) - m. \]

\(\rho_m(v) \) is much smaller than \(\rho_n(v) \) and \(\rho_h(v) \). An increase in \(v \) results in an increase in \(m_\infty(v) \) and a large \(\frac{dm}{dt} \).

Hence Na activates more rapidly than K in response to a change in \(v \).

\(v, m \) are on a fast time scale and \(n, h \) are slow.
FitzHugh-Nagumo System

\[\varepsilon \frac{dv}{dt} = f(v) - w + I \quad \text{and} \quad \frac{dw}{dt} = v - 0.5w \]

\[I \] represents applied current, \(\varepsilon \) is small and \(f(v) \) is a cubic nonlinearity. Observe that in the \((v,w)\) phase plane which is small unless the solution is near \(f(v) - w + I = 0 \). Thus the \textit{slow manifold} is the cubic \(w = f(v) + I \) which is the \textit{nullcline} of the fast variable \(v \). And \(w \) is the slow variable with \textit{nullcline} \(w = 2v \).
Take $f(v) = v(1-v)(v-a)$.

Stable rest state $I=0$

Stable oscillation $I=0.2$
FitzHugh-Nagumo Orbits
References